Линии магнитной индукции вокруг проводника с током. Магнитное поле прямого проводника с током. Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током

Магнитное поле проводника с током. При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 38). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику. Направление магнитных силовых линий можно определить по правилу буравчика. Его формулируют следующим образом. Если поступательное движение буравчика 1 (рис. 39, а) совместить с направлением тока 2 в проводнике 3, то вращение его рукоятки укажет направление силовых линий 4 магнитного поля вокруг проводника. Например, если ток проходит по проводнику в направлении от нас за плоскость листа книги (рис. 39, б), то магнитное поле, возникающее вокруг этого проводника, направлено по часовой стрелке. Если ток по проводнику проходит по направлению от плоскости листа книги к нам, то магнитное поле вокруг проводника направлено против часовой стрелки. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля и его напряженность уменьшаются. Напряженность магнитного поля в пространстве, окружающем проводник,

H = I/(2?r) (44)

Максимальная напряженность Н max имеет место на внешней поверхности проводника 1 (рис. 40). Внутри проводника также

возникает магнитное поле, но напряженность его линейно уменьшается по направлению от внешней поверхности к оси (кривая 2). Магнитная индукция поля вокруг и внутри проводника изменяется таким же образом, как и напряженность.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют обмоткой, или катушкой.
При проводнике, согнутом в виде витка (рис. 41, а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 41, б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки. Магнитное поле катушки, обтекаемой током, имеет такую же форму, как и поле прямолинейного постоянного магнита (см. рис. 35, а): силовые магнитные линии выходят из одного конца катушки и входят В другой ее конец. Поэтому катушка, обтекаемая током, представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.
Электромагниты нашли чрезвычайно широкое применение в технике. Они создают магнитное поле, необходимое для работы электрических машин, а также электродинамические усилия, требуемые. Для работы различных электроизмерительных приборов и электрических аппаратов.
Электромагниты могут иметь разомкнутый или замкнутый магнитопровод (рис. 42). Полярность конца катушки электромагнита можно определить, как и полярность постоянного магнита, при помощи магнитной стрелки. К северному полюсу она поворачивается южным концом. Для определения направления магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика. Если совместить направление вращения рукоятки с направлением тока в витке или катушке, то поступательное движение буравчика укажет направление магнитного поля. Полярность электромагнита можно определить и с помощью правой руки. Для этого руку надо положить ладонью на катушку (рис. 43) и совместить четыре пальца с направлением в ней тока, при этом отогнутый большой палец покажет направление магнитного поля.

При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 26). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Н
аправление магнитных силовых линий можно определить по правилу буравчика.Если поступательное движение буравчика (рис. 27) совместить с направлением тока в проводнике, то вращение его рукоятки укажет направление силовых линий магнитного поля вокруг проводника. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

При проводнике, согнутом в виде витка (рис. 28,а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, с
озданные отдельными витками, складываются (рис. 28,б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле.

Катушка, обтекаемая током, представляет собой искусственный электрический магнит. Для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.

О

пределить направление магнитного поля, создаваемого витком или катушкой, можно также с помощью правой руки (рис.29) и буравчика (рис. 30).

18. Магнитные свойства различных веществ.

Все вещества в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.

К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью µ и хорошо притягиваются к магнитам и электромагнитам.

К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Парамагнитные материалы притягиваются к магнитам и электромагнитам во много раз слабее, чем ферромагнитные материалы.

Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр.

Магнитные свойства ферромагнитных материалов. Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок.

Кривая намагничивания . Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания (рис. 31), которая представляет собой зависимость индукции В от напряженности Н магнитного поля (от намагничивающего тока I ).

Кривую намагничивания можно разбить на три участка:О-а , на котором магнитная индукция возрастает почти пропорционально намагничивающему току; а-б , на котором рост магнитной индукции замедляется, и участок магнитного насыщения за точкой б , где зависимостьВ от Н становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля.

П
еремагничивание ферромагнитных материалов, петля гистерезиса
. Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рис. 32 показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I . Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в ), будет больше индукции, полученной при намагничивании (участки О-а и д-а ). Когда намагничивающий ток будет доведен до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение В r , соответствующее отрезку О-б . Это значение называется остаточной индукцией.

Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока - остаточным магнетизмом.

П
ри изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженностьН с , при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а , получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания. Кривую изменения индукции называют петлей гистерезиса.

Влияние ферромагнитных материалов на распределение магнитного поля . Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т. е. индукция магнитного поля внутри тела и вблизи него возрастает. Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут (рис. 33) и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.

Магнитами называются тела, обладающие свойством при­тягивать железные предметы. Проявляемое магнитами свойство притяжения называется магнетизмом. Магниты бывают есте­ственными и искусственными. Добываемые железные руды, об­ладающие свойством притяжения, называются естественными магнитами, а намагниченные куски металла - искусственными магнитами, которые часто называют постоянными магнитами.

Свойства магнита притягивать железные предметы в наибольшей степени проявляются на его концах, которые называются магнитными полюсам и, или просто полюсами. Каждый магнит имеет два полюса: северный (N - норд) и южный (S- зюйд). Линия, проходящая через середину магнита, называется нейтральной л и н и е й, или нейтралью, так как по этой линии не обнаруживается магнитных свойств.

Постоянные магниты образуют магнитное поле, в котором действуют магнитные силы в определенных направлениях, называемых силовыми линиями. Силовые линии выходят из северного полюса и входят в южный.

Электрический ток, проходящий по проводнику, также образует вокруг проводника магнитное поле. Установлено, что магнитные явления неразрывно связаны с электрическим то­ком.

Магнитные силовые линии располагаются вокруг проводника с током по окружности, центром которых является сам проводник, при этом ближе к проводнику они располагаются гуще, а дальше от проводника - реже. Расположение магнитных силовых линий вокруг проводника с током зависит от формы его поперечного сечения.

Для определения направления силовых линий пользуются правилом буравчика, которое формулируется так: если ввинчивать буравчик по направлению тока в проводнике, то вращение рукоятки буравчика покажет направление магнитных силовых линий.

Магнитное поле прямого проводника представляет собой ряд концентрических окружностей (рис. 157, а). Для усиления маг­нитного поля в проводнике последний изготовляют в виде катушки (рис. 157, б).

если направление вращения рукоятки буравчика совпадает с направлением электрического тока в витках катушки, то поступательное движение буравчика направлено в сторону се­верного полюса.


Магнитное поле катушки с током аналогично полю постоянного магнита, поэтому катушка с током (соленоид) имеет все свойства магнита.

Здесь также направление магнитных силовых линий вокруг каждого витка катушки определяется правилом буравчика. Си­ловые линии соседних витков складываются, усиливая общее магнитное поле катушки. Как следует из рис. 158, силовые линии магнитного поля катушки выходят из одного конца и входят в другой, замыкаясь внутри катушки. Катушка, как и постоянные магниты, имеет полярность (южный и северный полюсы), кото­рая также определяется по правилу буравчика, если изложить его так: если направление вращения рукоятки буравчика совпа­дает с направлением электрического тока в витках катушки, то поступательное движение буравчика направлено в сторону се­верного полюса.

Для характеристики магнитного поля с количественной стороны введено понятие магнитной индукции.

Магнитной индукцией называется число магнитных силовых линий, приходящихся на 1 см 2 (или 1 м 2) поверхности, перпендикулярной направлению силовых линий. В системе СИ магнитная индукция измеряется в теслах (сокращенно Т) и обозначается буквой В (тесла = вебер/м2 = вольт секунда/м2

Вебер - единица измерения магнитного потока.

Магнитное поле можно усилить, если вставить в катушку железный стержень (сердечник). Наличие железного сердечника усиливает поле, так как, находясь в магнитном иоле катушки, железный сердечник намагничивается, создает свое поле, которое складывается с первоначальным и усиливается. Такое устройство называется электромагнитом.

Общее число силовых линий, проходящих через сечение сердечника, называется магнитным потоком. Величина маг­нитного потока электромагнита зависит от тока, проходящего по катушке (обмотке), числа се витков и сопротивления магнитной цепи.

Магнитной цепью, или магиитопроводом, называется путь, по которому замыкаются магнитные силовые линии. Магнитное сопротивление магнитопровода зависит от магнитной проницае­мости среды, по которой проходят силовые линии, длины этих ли­ний и поперечного сечения сердечника.

Произведение тока, проходящего по обмотке, на число ее витков носит название магнитодвижущей силы (м. д. с). Маг­нитный поток равен магнитодвижущей силе, деленной на магнитное сопротивление цепи - так формулируется закон Ома для магнитной цепи. Так как число витков и магнитное сопротивление для данного электромагнита - величины постоянные, магнитный поток электромагнита можно изменять, регулируя ток в его обмотке.

Электромагниты находят самое широкое применение в различ­ных машинах и приборах (в электромашинах, электрических звонках, телефонах, измерительных приборах и т. д.).

Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от . Он равен просто величине , умноженной на длину окружности. Если радиус окружности равен , то

.

Полный ток через петлю есть просто ток в проводе, поэтому

. (13.17)

Напряженность магнитного поля спадает обратно пропорционально , расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что направлено перпендикулярно как , так и , имеем

(13.18)

Фигура 13.7. Магнитное поле вне длинного провода с током .

Фигура 13.8. Магнитное поле длинного соленоида.

Мы выделили множитель , потому что он часто появляется. Стоит запомнить, что он равен в точности (в системе единиц СИ), потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии ток в создает магнитное поле, равное .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,- они отталкиваются.

Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» на рисунке. Эта кривая проходит расстояние внутри соленоида, где поле, скажем, равно , затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от вдоль этой кривой равен в точности , и это должно равняться , умноженному на полный ток внутри , т.е. на (где - число витков соленоида на длине ). Мы имеем

Или же, вводя - число витков на единицу длины соленоида (так что ), мы получаем

Фигура 13.9. Магнитное поле вне соленоида.

Что происходит с линиями , когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (13.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов, уже учтенных членом .

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились, когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,- у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,- однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.

Презентация к уроку физики по теме " Магнитное поле. Магнитное поле прямого проводника. Магнитные линии" 8 класс. Учебник А.В. Перышкин. М.: Дрофа, 2013

Данный материал позволяет сформировать у обучающихся научное представление о магнитном поле. Идет выдвижение гипотезы и ее обоснование, поиск и выделение необходимой информации при работе с учебником, установление причинно-следственных связей при проведении опыта,выделение и осознание обучающимися того, что уже усвоено и что еще необходимо усвоить, осознание качества и уровня усвоения материала (тестирование и взаимопроверка)

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сорокина Ольга Адольфовна учитель физики и математики ГОКУ АО «Общеобразовательная школа при учреждениях исполнения наказания»

Магнитное поле

Во всём мне хочется дойти До самой сути. В работе, в поисках пути, В сердечной смуте До сущности протекших дней, До их причины, До оснований, до корней, До сердцевины. Б. Пастернак

Гипотеза Вокруг любого проводника с током, т.е. движущихся электрических зарядов, существует магнитное поле Ток следует рассматривать как источник магнитного поля! Цель: формирование представления о магнитном поле

● установить связь между электрическим током и магнитным полем, ● дать понятие магнитных линий, ● описать магнитное поле прямого тока с помощью магнитных линий Задачи

Чтобы нам продолжить путь, Надо знанья почерпнуть Мы тетради открываем И магнитное поле изучаем N S

Опыт Эрстеда Взаимодействие проводника с током и магнитной стрелки Цель опыта: пронаблюдать взаимодействие проводника с током и магнитной стрелки Оборудование: источник тока, ключ, реостат, соединительные провода, толстый прямой проводник, магнитная стрелка на подставке Ход работы: собрать электрическую цепь. Расположить под прямым проводником магнитную стрелку и дать ей успокоиться. Замкнуть ключ.

Опыт Эрстеда Почему повернулась стрелка?

Ханс Кристиан Эрстед 1777 - 1851 датский физик, непременный секретарь Датского королевского общества (с 1815). Окончил Копенгагенский университет (1797). С 1806 года - профессор этого университета, с 1829 года одновременно директор Копенгагенской политехнической школы. Работы Эрстеда посвящены электричеству, акустике, молекулярной физике. В 1820 году он обнаружил действие электрического тока на магнитную стрелку. Это привело к возникновению новой области физики - электромагнетизма

Что доказывает опыт Эрстеда? Имеет ли значение, где помещена стрелка: под или над проводником? 3. Влияет ли на результат опыта величина силы тока в проводнике? 4. Что изменится, если поменять полярность полюсов источника тока? 5. Как лучше ориентировать проводник для наибольшего отклонения стрелки? Ответьте на вопросы

Магнитное поле порождается только движущимися зарядами, в частности электрическим током В отличие от электрического поля магнитное поле обнаруживается по его действию на движущиеся заряды (движущиеся заряженные тела) Магнитное поле, как и электрическое поле, материально, т.к. оно действует на тела, и следовательно, обладает энергией Магнитное поле обнаруживается по действию на магнитную стрелку Свойства магнитного поля Магнитное поле характеризуется направлением, определяемым с помощью магнитной стрелки

Линии магнитного поля – воображаемые линии, вдоль которых ориентируются магнитные стрелки Линии магнитного поля N N N Графически магнитное поле изображается с помощью магнитных силовых линий

Магнитные линии магнитного поля тока представляют собою замкнутые линии, охватывающие проводник + - Направлением магнитного поля в данной точки считают направление, в котором установится северный конец магнитной стрелки. Линии магнитного поля

Расположение магнитных стрелок вокруг проводника с током ● Почему для изучения магнитного поля можно использовать железные опилки? ● Как располагаются железные опилки в магнитном поле прямого проводника? ● Что называют магнитной линией магнитного поля? ● Для чего вводят понятие магнитной линии поля?

Определение направления линий магнитного поля проводника с электрическим током Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике

Тест О чем свидетельствует опыт Эрстеда? а) о влиянии проводника с током на магнитную стрелку б) о существовании вокруг проводника с током магнитного поля в) об отклонении магнитной стрелки около проводника с током Источником магнитного поля являются а) движущиеся электрические заряды б) неподвижные заряды в) любые заряженные частицы 3. Магнитная линия магнитного поля – это… а) линия, по которой движутся железные опилки б) линия, которая показывает действие магнитного поля на магнитные стрелочки в) линия, вдоль которой устанавливаются в магнитном поле оси магнитных стрелочек

Тест 4. Какова форма магнитных линий магнитного поля прямого проводника с током? а) замкнутые кривые вокруг проводника б) концентрические окружности, охватывающие проводник в) радиальные линии, отходящие от проводника как от центра 5. Какое направление принято за направление магнитной линии магнитного поля? а) направление, которое указывает северный полюс магнитной стрелки б) направление, которое указывает южный полюс магнитной стрелки в) направление, в котором устанавливается ось магнитной стрелки

Рефлексия Я узнал много нового. Мне это пригодится в жизни. На уроке было над чем подумать. На все возникшие у меня в ходе урока вопросы, я получил ответы. 5. На уроке я поработал добросовестно и цели урока достиг.

Список использованной литературы А.В. Перышкин. Физика 8 класс. М.: Дрофа, 2013 А.В. Чеботарева. Тесты по физике 8 класс. М.: издательство «Экзамен» 2016 3. sdnnet.ru kabinet403.ucoz.ru tonpix.ru znanie.podelise.ru


Понравилась статья? Поделитесь с друзьями!