Морские платформы для добычи углеводородов. Кирилл Молодцов: РФ за пять лет создаст технологию подводной добычи нефти. Есть оценка ущерба от прошедшей атаки

Анализ опыта применения подводных технических средств добычи и транспортировки нефти и газа на арктическом шельфе показывает, что отечественная нефтегазовая отрасль в этом сегменте переживает явное технологическое отставание от мировых лидеров. В статье приводятся основные причины такого запаздывания и предлагаются пути интенсификации производства современных технических средств освоения шельфа, а также механизмы привлечения инвестиций в этот сектор промышленности.

Один из главных векторов развития мирового нефтегазового комплекса направлен на освоение углеводородных месторождений, расположенных на континентальных шельфах. Российская Федерация обладает самым большим по площади континентальным шельфом и крупнейшими ресурсами углеводородов. Для развития этого колоссального потенциала отечественного нефтегазового комплекса, интенсивного, эффективного и безопасного освоения шельфовых месторождений необходимо обеспечить опережающее технологическое развитие смежных отраслей промышленности, обеспечивающих производство нефтегазового и электротехнического оборудования, нефтепромыслового морского флота, а также научно-исследовательского, опытно-конструкторского и сервисного обеспечения.

Несмотря на некоторое объективное технологическое отставание сегодня, Россия всегда была лидером в освоении шельфовых месторождений углеводородов, ведь именно нашей стране принадлежат прорывные проекты мирового значения, открывшие возможность их освоения. Несмотря на реализацию прорывных шельфовых проектов в прошлом и отчасти в настоящем, отечественная нефтегазовая промышленность уже сегодня.

Парк подводных технических средств

Большая часть шельфа России является арктической с экстремальными природно-климатическими условиями. Главными проблемами при освоении арктического шельфа являются сложная ледовая обстановка, а именно опасность айсбергов, и отсутствие круглогодичного доступа плавучих технических средств
к месторождениям, а значит, и отсутствие круглогодичной возможности разведки и разработки. Например, бурение с помощью платформы «Университетская-1» будет осуществляться в межледовый сезон (с августа по конец октября). В противном случае для обеспечения круглогодичного бурения требовалось строительство на месторождении ледостойкой платформы. Понятно, что и первый, и второй вариант усложняют проект и приводят к его удорожанию.

В этих условиях наиболее эффективными являются подводные технические средства освоения шельфа: подводные трубопроводы, подводные буровые установки, подводные перекачивающие комплексы, подводные комплексы подготовки углеводородов.

Мировые нефтегазовые компании, в том числе и российские, имеют большой опыт в строительстве и эксплуатации магистральных и промысловых подводных трубопроводов. Один из крупнейших подводных магистральных газопроводов «Северный поток» соединяет города Выборг и Грайфсвальд, с помощью него осуществляется транспортировка российского природного газа в Германию в обход стран-транзитеров. Подводные промысловые трубопроводы в Российской Федерации используются при освоении шельфа острова Сахалин, а, например, в Европе, сеть подводных трубопроводов построена в Северном море между Норвегией и Великобританией.
Наибольший интерес для освоения арктического шельфа представляют подводные технические средства бурения разведывательных и добывающих скважин, а также средства сбора, подготовки и перекачки добытых на шельфе углеводородов по подводным трубопроводам без использования плавучих технических средств. Мировыми лидерами в области разработки и производства подводных технических средств различного назначения для шельфовых месторождений углеводородов являются норвежские компании FMC Technologies и Aker Solutions.
Также разработки подводного оборудования и технологий осуществляют в компаниях Siemens и MAN. Лидером же по использованию подводных технологий является норвежская нефтегазовая компания Statoil
.
Подводные добычные комплексы. Сегодня компания Statoil использует подводные технологии на нескольких месторождениях. В качестве примера можно привести месторождение Ormen Lange, расположенное в Баренцевом море и осваиваемое с 2007 года. В начале его освоения, на этапе бурения добывающих скважин, на каждом устье куста была установлена донная плита с буровыми окнами, на которую после заканчивания скважин был помещен подводный добычной комплекс (ПДК). Он включает в себя манифольд и весь необходимый комплекс устьевого оборудования скважины для обеспечения безопасного извлечения углеводородного сырья. Внешний вид ПДК представлен на рисунке 1. Далее многофазовый поток углеводородов, состоящий из смеси углеводородов (нефти, газа и конденсата), песка и воды по 160-километровому подводному трубопроводу транспортируется на перерабатывающий комплекс, расположенный на острове вблизи города Hammerfest, где происходит разделение и очистка углеводородов. После этого газ сжижается и подготавливается к загрузке в танкеры, а отделенный углекислый газ закачивается обратно в скважины.

На месторождении Tordis, расположенном в Северном море, компания Statoil при добыче углеводородов осуществляет подводную подготовку извлеченных углеводородов к дальнейшей транспортировке. Производится разделение нефти, газа и песка с помощью подводных сепараторов (рис. 2).

Подводные перекачивающие комплексы. Для транспортировки добытого на шельфе сырья в подавляющем большинстве случаев используются танкерные суда. Однако на некоторых месторождениях арктических морей используются подводные перекачивающие комплексы. Это обеспечивает круглогодичную эксплуатацию месторождений вне зависимости от ледовой обстановки. Например, на месторождении Asgard с 2013 года эксплуатируются подводные перекачивающие комплексы, а на месторождении Ormen Lange планируется их установка к 2017 году.

Первый подводный перекачивающий комплекс был создан компанией General Electric мощностью 850 кВт, он был испытан в 1992 году в заводских условиях. Сегодня разработку таких комплексов осуществляют ведущие электротехнические компании. В Норвегии была испытана установка MAN Hofim-type (рис. 3), а в 2009 году проведены испытания компрессора Siemens ECO-II (рис. 4).

Подводные комплексы в России. В настоящее время в мире на более чем 130 морских месторождениях используются подводные технологии добычи углеводородов. В России первый ПДК установлен на шельфе Охотского моря в рамках обустройства Киринского месторождения, а в планах их использование при освоении Штокмановского газоконденсатного месторождения.

Используемый на Киринском месторождении подводный добывающий комплекс обеспечивает эксплуатацию семи скважин, газ из которых поступает к манифольду, являющемуся центральным звеном комплекса. Добытый газ собирается на манифольде и затем по морскому трубопроводу транспортируется на береговой технологический комплекс. Транспортировка осуществляется без дополнительного компримирования, под действием давления пласта. На береговом технологическом комплексе, после подготовки к транспортировке, газ направляется по 139-километровому газопроводу на головную компрессорную станцию газотранспортной системы «Сахалин – Хабаровск – Владивосток». Производителем ПДК является компания FMC Technologies.

Причины отставания

У отечественных компаний есть опыт по кооперации и производству плавучих технических средств освоения шельфа, однако все достижения в этой области были совершены в других экономических условиях функционирования нашего государства. На сегодняшний день производство собственных законченных плавучих платформ ведется в недостаточных количествах. Однако технико-технологические наработки заводов, опыт ученых и специалистов, принимавших участие в их разработке и производстве, для нашей страны сегодня является бесценными. Также внимание, уделяемое отечественными компаниями подводным технологиям, не соответствует их значимости и перспективности использования для освоения арктического шельфа. Недоработки в обоих этих направлениях являются серьезным вызовом современной нефтегазовой отрасли страны.

Основными причинами отставания в области производства технических средств и подводных комплексов для освоения шельфа являются и сложность природно-климатических условий российских арктических морей, и большое количество континентальных месторождений с относительно легко извлекаемыми углеводородами, разработка которых полностью покрывает потребности внутреннего и зарубежного рынков. Все же главной причиной, по которой сегодня не удается обеспечить интенсивное строительство технических средств для разведки и добычи углеводородов на шельфе, служит отсутствие необходимой эффективной научно-исследовательской, опытно-конструкторской, производственно-испытательной и организационно-финансовой инфраструктуры. Необходимо понимать, что при решении проблем функционирования перечисленных элементов инновационной нефтегазовой инфраструктуры целесообразно опираться не только на отечественные разработки, но и обязательно учитывать и использовать положительный опыт иностранных компаний.

Национальный консорциум

Производственно-испытательная основа нефтегазовой промышленности в части проектирования, строительства и испытания технических средств нефтепромыслового морского флота формируется «Объединенной судостроительной корпорацией». Есть надежда, что такая координация усилий государства по разработке, производству и испытанию как надводного флота, так и подводного парка технических средств освоения шельфа сможет обеспечить эффективное развитие и внедрение этих технологий.

Для решения проблем, связанных с развитием образовательной, научно-исследовательской, опытно-конструкторской инфраструктуры и повышением ее эффективности, могут быть использованы ресурсы Национального научно-образовательного инновационно-технологического консорциума вузов минерально-сырьевого и топливно-энергетического комплексов, созданного с участием ведущих отраслевых вузов страны. Участники консорциума при поддержке российских нефтегазовых компаний могут покрыть все потребности отечественной нефтегазовой отрасли не только в подготовке высококвалифицированных специалистов и их переподготовке, но и в проведении НИР и ОКР, а также в трансфере и адаптации иностранных технологий.

Как показывает практика, при создании консорциумов и совместных предприятий отечественными и иностранными нефтегазовыми компаниями для реализации отдельных шельфовых проектов все импортируемые технологии не получают глубокого изучения и дальнейшего широкого распространения. Также трудности функционированию таких «союзов» могут создать и политические мероприятия правительств иностранных государств, что может повлечь полную остановку отечественных шельфовых проектов с их участием. И наоборот, при работе российских нефтегазовых компаний с российским Национальным консорциумом вузов выпускаемые ими специалисты и ученые будут иметь необходимые знания и навыки работы с современным внедряемым оборудованием и технологиями. Создание этого консорциума, с учетом сегодняшних политических условий, является весьма своевременным и перспективным.

Сегодня в России функционирует целый ряд добывающих консорциумов отечественных и иностранных нефтегазовых компаний. Консорциум Sakhalin Energy Investment Company Ltd создан для реализации проекта «Сахалин-2» и состоит из компаний «Газпром», Royal Dutch Shell, Mitsui и Mitsubishi. Другой пример – консорциум Exxon Neftegas Ltd, членами которого являются компании «Роснефть» и ExxonMobil: под его управлением реализуется проект «Сахалин-1». Примером технологического зарубежного консорциума служит объединение компа-
ний FMC Technologies, Anadarko, BP, ConocoPhillips и Shell, преследующее цель разработки нового поколения подводной техники, которая будет стандартизована для решения типовых задач, стоящих перед разработчиками шельфовых месторождений

Норвежский опыт

Скорость развития и создания перспективных технических средств освоения шельфа и, следовательно, эффективность и безопасность шельфовых проектов в арктических морях определяют финансово-организационные условия и механизмы, обеспечиваемые правительствами стран, обладающих доступом к шельфу. При создании финансово-организационных условий и поддержке отечественных промышленных компаний нет никаких сомнений, что они смогут обеспечить освоение российской части шельфа Арктики. При этом, конечно, необходимо изучать и учитывать опыт стран-лидеров в этой области.

Одной из них является Норвегия, которая в 1970–80-е годы при практически нулевой технологической готовности, путем привлечения иностранных инвестиций и технологий, смогла обеспечить эффективное и безопасное освоение собственных шельфовых месторождений углеводородов. Затем создать производственный потенциал и трансформировать его в крупную промышленность, производящую необходимые технические средства для освоения шельфа. Обеспечить развитие и становление ведущих в мире производственных и сервисных нефтегазовых компаний. Совершить экспансию на мировой рынок надводных технических средств и стать лидером в области разработок, испытания и внедрения подводных технических средств освоения шельфа. Сегодня норвежский шельф Северного и Норвежского морей, по существу, являются глобальной «лабораторией» по разработке, производству и испытанию современных и перспективных технических средств освоения шельфовых месторождений.

Основным институтом развития норвежской нефтегазовой отрасли является Исследовательский совет Норвегии, который формулирует и осуществляет координацию всех отраслей промышленности, связанных с нефтегазовым комплексом. Финансирование Исследовательского совета осуществляет правительство Норвегии. Исследовательский совет обеспечивает сопровождение национально значимых проектов развития нефтегазовых технологий, среди них PETROMAKS – программа финансирования научных проектов нефтяного сектора, GASSMAKS – программа финансирования научных проектов газового сектора, DEMO2000 – программа финансирования развития новых нефтегазовых технологий и их коммерциализации, RENERGI – программа финансирования экологических проектов для энергетического сектора, CLIMIT – программа финансирования проекта экологически чистого природного газа.

В Российской Федерации до 2012 года действовала федеральная целевая программа «Мировой океан», главной долгосрочной целью которой являлось комплексное решение проблемы изучения, освоения и эффективного использования ресурсов и пространств Мирового океана в интересах экономического развития и обеспечения безопасности страны. В настоящее время аналогичной по целям и задачам программы нет.

Показателен опыт Норвегии и в развитии организационного аспекта на законодательном уровне. Например, в процессе привлечения инвестиций и технологий в шельфовые проекты были разработаны следующие типовые соглашения: «Пятидесятипроцентный» (50% Agreement), «Финансовый» (Financial Agreement), «Доброй воли» (Goodwill Agreement). Первый тип соглашений предусматривает, что иностранные компании при освоении месторождения обязуются выполнить на территории Норвегии минимум 50% всех исследовательских работ, необходимых для разработки этого месторождения. Такие соглашения до сих пор являются неотъемлемой частью договоров о разработке норвежского шельфа, а контроль за их исполнением лежит непосредственно на Министерстве топлива и энергетики Норвегии. К примеру, компания Shell, которая была оператором первой фазы месторождения Troll, 73% средств на научно-исследовательские проекты потратила на услуги норвежских компаний и институтов, а в рамках проекта Draugen – 80%. Второй тип соглашений, финансовый, обязывал иностранные компании выполнять НИР и ОКР на территории Норвегии в течение установленного соглашением времени с заранее установленным бюджетом (как правило, долей дохода от освоения месторождения). Третий тип соглашений обязывал иностранные компании проводить в Норвегии столько научно-технических исследований, сколько это возможно, без жестких юридических обязательств, однако требовал от иностранных компаний представлять годовые отчеты о проделанной работе Исследовательскому совету.

Сотрудничество в рамках этих соглашений позволило обеспечить проведение в Норвегии широкого круга исследований в области изучения морей, в сфере энергетики, машиностроения и других связанных с развитием шельфовой нефтегазовой промышленности. Необходимо отметить, что контролирующей стороной таких соглашений в Норвегии всегда является государство в лице Министерства топлива и энергетики.

Заключение

Россия обладает уникальным по своему нефтегазовому потенциалу шельфом арктических морей и высокоинтеллектуальными человеческими ресурсами. В сегодняшних политических и финансовых условиях у РФ появился последний, долгое время отсутствовавший, стимул к интенсивному развитию собственных современных и перспективных нефтегазовых технологий и созданию передовой отечественной нефтегазовой промышленности – запрет на импорт иностранных технологий освоения шельфовых месторождений углеводородов. Несомненным является тот факт, что при правильном и своевременном создании стимулирующих финансово-организационных условий со стороны государства и национальных нефтегазовых компаний на российском шельфе будут реализовываться крупнейшие в мире нефтегазовые проекты с наивысшими показателями по эффективности и безопасности и с использованием отечественной инновационной техники и технологий.

Подводный добычной комплекс представляет собой несколько скважин, оборудованных подводной фонтанной арматурой, системой управления, газосборными трубопроводами, и все это находится на морском дне. Газ от скважин поступает к манифольду (своего рода сборный пункт) и далее по основному газопроводу доставляется на берег на установку комплексной подготовки газа.

Подводное добычное оборудование, находящееся на дне Охотского моря без платформ и других надводных конструкций, дает возможность добывать газ подо льдом, в сложных климатических условиях, исключая влияние природных явлений. Это позволяет избежать многих рисков, присущих работам в неблагоприятных природных и климатических условиях.

Подобные технологии уже использовались в других странах, например, в Норвегии на месторождениях Снёвит и Ормен Ланге, но в России будут впервые применены именно на Киринском месторождении. Технологии подводной добычи надежны и позволяют осуществлять промышленную деятельность с минимальным негативным воздействием на экологическую систему региона.

Устьевое оборудование скважины

Проект освоения месторождения предусматривает 7 скважин. Подводная фонтанная арматура типа «елка» позволяет регулировать подачу газа из скважины. Противотраловая защитная конструкция защищает фонтанную арматуру от механического воздействия.

Вес вместе с защитой 141 т
Размеры 23x23x10 м

Манифольд

Газ от скважин поступает к манифольду (сборный пункт). Устройство представляет собой несколько трубопроводов, закрепленных на одном основании, рассчитанных на высокое давление и соединенных по определенной схеме. Манифольд распределяет потоки газа, моноэтиленгликоля (МЭГ), химических реагентов и сигналы управления подводным добычным комплексом.

Тройник

Тройник трубопровода предназначен для подключения средних скважин в линию, которая соединена с манифольдом.

Оконечное устройство

Оконечное устройство трубопровода предназначено для подлкючения под водой крайних скважин в линию, которая соединена с манифольдом.

Трубопровод моноэтиленгликоля (МЭГ)


По трубопроводу от УКПГ до манифольда подается моноэтиленгликоль, необходимый для предотвращения кристаллизации. От манифольда МЭГ подается в скважину по внутрипромысловому шлангокабелю.

Шлангокабель


Основной шлангокабель проложен по дну моря и соединяет манифольд с площадкой управления подводным добычным комплексом. По шлангокабелю передаются команды управления от операторной на подводное оборудование месторождения.

Внутрипромысловые шлангокабели соединяют манифольд с фонтанной арматурой скважин.

Газопровод

Газопровод соединяет месторождение и установку комплексной подготовки газа (УКПГ). По нему пластовая смесь газа, конденсата и воды поступает с месторождения на УКПГ.

Подводный робот ROV

Производит подводный монтаж оборудования. Имеет 2 руки-манипулятора и обладает системой стабилизации положения.

В пределах Мирового океана установлено около 70 нефтегазоносных или потенциально нефтегазоносных бассейнов или провинций.

Генетически они разнородны, поэтому при анализе целесообразно сгруппировать их по географическому признаку в 7 основных регионов: Северный Ледовитый океан, Северная Атлантика, Южная Атлантика, западная часть Индийского океана, восточная часть Индийского океана, западная часть Тихого океана, восточная часть Тихого океана.

Северный Ледовитый океан.
Относится к наименее изученному в нефтегазоносном отношении региону Мирового океана. Характеризуется сложными природно-климатическими условиями, сдерживающими освоение его нефтегазовых ресурсов. Относительно исследована юго-западная часть, где выделяют Северо-Аляскинский, дельты р. Макензи - моря Бофорта и Свердрупский нефтегазоносные бассейны. Кроме того, к потенциально нефтегазоносным относят бассейны на шельфе Гренландии и Евразии. Северо-Аляскинский нефтегазоносный бассейн площадью 462 тыс. км включает в себя краевой прогиб Колвилл и две впадины (Умнат на востоке и Чукотскую на западе), разделенные сводом Барроу. В пределах бассейна выявлено свыше 30 месторождений углеводородов, большая часть которых располагается в акватории.

Наиболее крупное, преимущественно нефтяное, месторождение бассейна Прадхо-Бей открыто в 1968 году в США. Основные залежи нефти сосредоточены в песчаниках триаса (на глубине 2460-2650 м), юры (2060-2150 м) и в каменноугольных известняках (2680- 3190 м). Большая часть залежей расположена на суше. Геологические запасы нефти этого месторождения оцениваются в 3 млрд. т. При коэффициенте извлечения 32- -43 % извлекаемые запасы составят 0,97-1,32 млрд. т. Извлекаемые запасы газа - 736 млрд. м. Разработка месторождения началась в 1977 г. после сооружения Трансаляскинского нефтепровода протяженностью 1287 км. Эксплуатация этого месторождения в течение 10 лет принесла США доход 100 млрд. дол.

К западу от месторождения Прадхо-Бей в 1976 г. в юрских песчаниках выявлено крупное нефтяное месторождение Купарук-Ривер с извлекаемыми запасами нефти до 200 млн. т. В 1980 г. в песчаниках триаса, юры и мела открыто нефтяное месторождение Милн-Пойнт. К востоку от месторождения Прадхо-Бей на побережье обнаружено четыре месторождения в песчаных коллекторах палеогена и три месторождения па шельфе (Сег-Дельта, Дак-Айленд, Флаксаман-Айленд) в каменноугольных отложениях, отложениях верхнего триаса и мела.

В целом, разведанные извлекаемые запасы углеводородов 16 морских месторождений Северо-Аляскинского бассейна составляют 1,5 млрд. т нефти и 750 млрд. м. газа. Потенциальные ресурсы оцениваются приблизительно в 3 млрд. т нефти и 1,7 трлн. м. газа.

Нефтегазоносный бассейн дельты р. Маккензи - моря Бофорта занимает площадь 120 тыс. км размеры его 120 Х 500 км. Поисковое бурение начато в 1965 г. Первое месторождение нефти (Аткинсон) открыто здесь в 1970 г. Всего в бассейне выявлено 25 нефтяных и газовых месторождений. Наиболее крупные газовые месторождения на побережье - Таглу и Парсонс - имеют извлекаемые запасы газа порядка 100 млрд. м. каждое. Непосредственно на шельфе моря Бофорта бурение было начато в 1979 г. с искусственных островов в 10 - 15 км от дельты р. Макензи. Сразу же были открыты два газонефтяных месторождения - Адю и Гарри. В 1976 г. начато бурение с плавучих буровых установок, приведшее к открытию в 1978 г. крупнейшего нефтяного месторождения Копаноар. Месторождение находится в 50 км от берега, глубина воды здесь 57 м. Извлекаемые запасы нефти оцениваются в 247 млн. т. Залежи залегают на глубине порядка 3,5 км.

В 1980 г. были открыты нефтегазовые месторождения Тарсьют, Некторалик, Иссунгнак и газовое месторождение Укалерк. Наиболее крупное месторождение Тарсьют. Извлекаемые запасы - 54-220 млн. т нефти. В 1981 г. в 32 км к востоку от месторождения Копаноар обнаружено нефтяное месторождение Коакоак. Четыре залежи залегают в интервале глубин 3240 - 3450 м. Максимальный дебит нефти - 685 т/сут, извлекаемые запасы - 274 млн. т. В 1984 г. в 74 км от берега при глубине воды 33 м выявлено нефтегазовое месторождение Амаулигак с запасами 83-100 млн. м3 нефти и 42 млрд. м3 газа. Дебиты скважин-до 1600 м3/ сут. Всего на побережье нефтегазоносного бассейна дельты р. Макензи-море Бофорта доказанные запасы нефти, оцениваются в 720 млн. т, газа - в 210 млрд. м3. На шельфе соответственно - 500 млн. т и 100 млрд. м3. Потенциальные извлекаемые ресурсы бассейна от 4,5 до 9,6 млрд. т нефти и приблизительно 1,7 трлн. м3 газа.

Свердрупский нефтегазоносный бассейн имеет площадь280 тыс. км2 и занимает большую часть Арктического архипелага Канады. В его строении выделяют две впадины: Парри и Элемир, разделенные горстовидным поднятиями о. Амунд-Рингнес.

С 1969 г. в бассейне открыто 19 месторождений углеводородов, в том числе одно нефтяное. Наиболее крупные газовые месторождения Дрейк-Пойнт (142 млрд. м3) и Хекла (198 млрд. м3) находятся в: юго-западной части бассейна, на северном побережье о-ва Мелвилл. Месторождения связаны с антиклинальными структурами. В 1979 г. в процессе бурения с намороженных ледовых оснований на внутреннем шельфе архипелага Парри при глубине моря 277- 318 м были открыты крупные газовые месторождения Уайтфиш и Чар. Разведанные извлекаемые запасы газа в бассейне достигли, почти 600 млрд. м3.

В начале 80-х годов были выявлены залежи легкой нефти в рифовом массиве девонского возраста (месторождение Бент-Хорн), а также ряд нефтегазовых месторождении (Маклин, Скейт, Сиско). С их открытием извлекаемые запасы нефти в Свердрупском бассейне, достигли 213 млн. т. В целом, для этого бассейна потенциальные извлекаемые ресурсы углеводородов оцениваются в 250 млн. т нефти и 1,13 трлн. м3 газа. Суммарная оценка потенциальных нефтегазовых ресурсов юго-западной части Северного Ледовитого океана (Арктический мегабассейн Северной Америки) составляет: 2,5-4,2 млрд. т нефти и 3,4-4,5 трлн. м3 газа, или 5,2-7,8 млрд. т углеводородов в пересчете на нефть. Здесь уже выявлено 60 морских и прибрежно-морских месторождений, в том числе 35 нефтяных и нефтегазовых и 25 газовых и газоконденсатных.

Северная Атлантика.

Располагается между континентами Северная Америка и Европа примерно до параллели 20" с. ш. На севере ограничена по меридиану восточных островов архипелага Шпицберген. Ширина Северной Атлантики колеблется от 3500 до 6400 км. К Северной Атлантике относят Средиземное море и условно Черное, Азовское и Каспийское моря. В тектоническом отношении Северная Атлантика представлена подводной окраиной материков, океанским ложе и срединно-океаническим хребтом. Нефтегазоносность связана с первой геотектурой океанского дна.

Нефтегазоносные бассейны Северной Атлантики располагаются в пределах подводных окраин Европейского и Северо-Американского материков, а также во внутренних морях типа Средиземного и Черного. К наиболее крупным нефтегазоносным бассейнам относятся: Норвежский, Североморский, Юго-Западной Европы, Лабрадорский, Мексиканский, Карибский, Западно-Средиземноморский, Адриатический, Восточно-Средиземноморский и Южно-Каспийский.

Норвежский нефтегазоносный бассейн расположен вдоль северо-западного побережья Скандинавского полуострова (Норвежское море).
Континентальный склон Норвежского моря осложнен краевым плато Беринг шириной около 200 км, опущенным на глубину до 1200 м и ограниченным с юго-запада поперечным разломом Ян-Майен. В восточной (внутренней) части плато находится рифтогенная впадина Беринг с осадочным чехлом мощностью более 8 км и утоненной до 15 км корой. Поисковое бурение начато в конце 70-х годов. В 1979 г. в Норвежском желобе на границе с Северным морем при глубине воды 340 м открыто газовое месторождение Тролл. Залежи находятся в хорошо проницаемых песчаниках юрского возраста. Освоение месторождения оценивается в 10 млрд. дол. Его детальная характеристика будет приведена позже.

В начале 80-х годов в северных районах Норвежского бассейна (юг Баренцева моря) установлены газовые залежи в триасовых и юрских песчаниках, залегающие на глубине 2,5 км, на площадях Тромсё и Хейдрун (банка Хальтен). На первой из них дебиты газа составили до 1 млн. м3 и конденсата до 30 м3 в сутки.

Североморский нефтегазоносный бассейн площадью 660 тыс. км2 охватывает большую часть акватории Северного моря. К настоящему времени в Северном море открыто более 100 нефтяных и около 80 газовых месторождений, из которых извлекается 24 % нефти и 30 % газа от общемировой морской нефте - газодобычи. Суммарные извлекаемые запасы углеводородов оцениваются в 7,5 млрд. т, из которых более 4 млрд. т приходится па долю нефти. Основная часть запасов (90 % нефти и 34 % газа) тяготеет к Центрально-Североморской рифовой системе, состоящей из нескольких грабенов (Центральный грабен, или Экофикс, Фортиз, Викинг, Северо-Нидерландский). Месторождения углеводородов в пределах Центрально-Североморской рифовой системы распределены неравномерно. Выделяют четыре участка с повышенной концентрацией нефти и газа: северную и центральную части грабена Викинг, грабены Фортиз и Экофиск (Центральный).

Плотность запасов северной части грабена Викинг 230 тыс. т/км2. Здесь сосредоточены крупнейшие нефтяные месторождения - Статьфиорд, Статвик, Брент, Ниниан, Слейпнер. Плотность запасов углеводородов центральной части грабена Викинг равен 120 тыс. т/км2 тут находятся такие месторождения нефти и газа как Берил, Хеймдал, Фригг.
К грабену Фортиз (плотность залежей 100 тыс. т/км2) приурочено крупное одноименное месторождение нефти.

Грабен Экофиск (Центральный) с плотностью запасов 210 тыс. т/км2 содержит крупные газонефтяные месторождения Экофиск и Элдфиск, газоконденсатные месторождения Албускыл и Валгалл.

В грабенах Викинг, Фортиз и Экофиск, площадь которых 22 тыс. км2, сконцентрировано более половины разведанных запасов углеводородов Северного моря. На остальной площади Центрально-Североморской рифовой системы средняя плотность запасов 14 тыс. т/км2.

Ряд месторождений выявлен на горстовидных поднятиях, смежных с грабенами. Так, в пределах поднятия Викинг, ограничивающего с востока одноименный грабен, открыто крупное нефтяное месторождение Озеберг, приуроченное к антиклинальной складке. Залежи находятся в песчаниках средней юры. Дебиты нефти до 770 т/сут, газа - 535 тыс. м3/сут, конденсата-150 т/сут. Общие извлекаемые запасы нефти оцениваются в 100 млн. т, газа - в 50 млрд. м3.

В Западно-Норвежском грабене в 1979 г. в водах глубиной 340 м открыто гигантское газонефтяное месторождение Тролл, приуроченное к антиклинальной складке площадью 700 км2.

В Южно-Североморской впадине установлены в основном газовые месторождения. Здесь известны такие крупные месторождения, как Леман, Индифатигейбл, Хьюитт, Вайкинг, Пласид. На суше находится гигантское газовое месторождение Гронинген (около 2 трлн. м3 газа).

Нефтегазоносный бассейн Юго-Западной Европы охватывает подводную ее окраину. В составе подводной окраины выделяют юго-западный шельф Франции в Бискайском заливе (Армориканский шельф), шельф Пиренейского полуострова (Испанский шельф) и Португальский шельф. Шельфовые зоны узкие (до 160 км), обрываются крутым континентальным склоном. Протяженность шельфов более 2500 км.
На Армориканском шельфе скважины, пробуренные до глубины 4,5 км, не дали положительных результатов. На шельфе Испании в 60 км от берега при глубине моря 146 м открыто нефтяное месторождение Кантабрико-Мар. Нефть легкая (0,837 г/см3), получена с глубины 1450 м из низов эоцена. В 13 км от порта Бермео (близ г. Бильбао) выявлено газовое месторождение с дебитом до 1,4 млн. м3/сут. В Кадисском заливе на продолжении Гвадалквивирской впадины при глубине моря 120 м открыто семь мелких газовых месторождений в песчаниках миоцена. На шельфе Португалии пробурено около 30 скважин, из которых только в трех обнаружена непромышленная нефть. Потенциальные ресурсы шельфа Юго-Западной Европы оцениваются невысоко: 0,3-0,6 млрд. т нефти и 0,1-0,3 трлн. м3 газа. Небольшие месторождения углеводородов открыты на шельфе Ирландского моря, в частности, газовое месторождение Кинсеил-Хед с запасами 40 млрд. м3 и месторождение нефти с запасами 40 млн. т (рифовая впадина Поркьюпайн).

Лабрадорский нефтегазоносный бассейн занимает северо-восточную часть атлантической окраины Северной Америки. В составе Лабрадорского нефтегазоносного бассейна можно выделить несколько нефтегазоносных областей (суббассейнов), из которых наиболее значительны Балтимор-Каньон, Новошотландская, Большой Ньюфаундлендской банки и Лабрадорская.

Нефтегазоносная область Балтимор-Каньон связана с грабенообразно впадиной размером 300X150 км, потенциальные ресурсы области оцениваются в 81 млн. т нефти и 116 млрд. м3 таза.

Более значительные перспективы связываются с погруженным рифовым массивом восточнее Балтимор-Каньона, а также с погруженным плато Блейк и банкой Джорджес.
Новошотландская нефтегазоносная область расположена в районе о-ва Сейбл. Здесь пробурено около 150 скважин и открыто несколько мелких залежей нефти и газа. Запасы газа наиболее крупного месторождения Тебо 13,5 млрд. м3, месторождение Венчур оценивается в 47,6 млрд. м3 газа и 2 млн. т конденсата.

Нефтегазоносная область Большой Ньюфаундлендской банки. Наиболее крупное месторождение нефти Хиберния открыто в 1977 г. Месторождение расположено в 310 км от берега, где глубина моря 80-90 м. Нефтяные залежи находятся в интервале глубин 2164-4465 м, в песчаниках мелового и позднеюрского возраста. Запасы месторождения оцениваются около 90 млн. т нефти. В пределах банки уже выявлено 15 газовых и нефтяных месторождений (Терра-Нова, Бен-Невис, Хеброн, Южный Темпест и др.), суммарные запасы которых оценивают в 177 млн. м3 нефти и 150 млрд. м3 газа. В 1979 г. в этом районе была пробурена скважина на глубину 6103 м при глубине воды 1480 м.

Лабрадорская нефтегазоносная область находится между 55° и 60° с. ш., связана с рифтогенным трогом Найн. В области открыт ряд газовых и газоконденсатных месторождений - Бьярни, Гудрнч, Снорри и Хопдайл. Извлекаемые запасы области оцениваются в 1,4 млрд. м3 газа и 600 млн. т нефти.

К северу от Лабрадорского нефтегазоносного бассейна в Девисовом проливе в результате поискового бурения получены непромышленные притоки углеводородов.
Мексиканский нефтегазоносный бассейн (рис 3) Его площадь почти 2 млн. км2. По оценкам американских геологов, это единственное место Мирового океана, где целесообразно бурение скважин на нефть и газ глубиной более 7,5 км. На северном шельфе Мексиканского залива в 200 км от берега открыто более 130 нефтяных и 410 газовых месторождений с начальными извлекаемыми запасами более 1 млрд. т нефти и 2,33 трлн. м3 таза; в сумме почти 3 млрд. т углеводородов. Мощность осадочного чехла достигает здесь 17 км, в том числе 12 км приходится па дельтовые песчано-глинистые отложения кайнозоя, сформированные Палеомиссисипи. 85 % разведанных запасов нефти северного шельфа Мексиканского залива (Голф-Кост) связано с 27 месторождениями, расположенными па шельфе штатов Луизиана и Техас. Месторождения концентрируются в зоне погребенного Мнссисипского рифта, выраженного в рельефе дна каньоном. В водах Миссисипи - каньон глубиной 2292 м - пробурена самая глубоководная скважина залива, из которой можно добывать нефть. Большинство месторождений имеют извлекаемые запасы 200 млн. т нефти и 100 млрд. м3 газа. Здесь находится самое крупное на территории США (исключая Аляску) нефтяное скопление - Ист-Тексас, начальные извлекаемые запасы которого оценивались в 850 млн. т. Значительное число крупных залежей углеводородов выявлено и в прибрежной части залива: Бей-Марчанд, Тимбалиер-Бей, Бей-Кайю, Кейллу-Айленд, Соут-Пасс. Всего в пределах Галф-Коста (совместно с прилегающей сушей) открыто более 1500 месторождений с извлекаемыми запасами нефти - 7,7 млрд. т и газа - 4,3 трлн. м3.

Геофизическими работами установлено продолжение продуктивной зоны и глубоководную часть Мексиканского залива (Миссисипский подводный каньон), где при глубине моря 375 м открыто нефтяное месторождение Коньяк.

Перспективной считается антиклинальная зона Пердидо, расположенная в глубоководной впадине Сигсби на континентальном склоне Техаса.

В последние годы наряду со снижением добычи морской нефти в пределах побережья Галф-Кост увеличилась добыча газа. Всего на северном шельфе Мексиканского залива добыто почти 1 млрд. т нефти и 1,3 трлн. м3 газа, что составляет около 70% начальных извлекаемых запасов углеводородов этой акватории. На западном шельфе Мексиканского залива располагается экваториальная часть нефтегазоносного бассейна Тампико-Тукспаи. Регион характеризуется широким развитием ископаемых рифов, которые образуют гигантское кольцо («Золотой пояс»), западная часть которого находится на суше, а восточная - в акватории. Протяженность как сухопутной, так и морской системы рифов составляет 180 км при ширине до 3 км. Высота рифов около 1 -1,5 км, иногда достигает 2,5 км. В настоящее время морские рифы Золотого пояса дают в год почти 2 млн. т нефти. В северной части Золотого пояса находится самое крупное месторождение нефти этого региона - Аренке, извлекаемые запасы которого составляют 141 млн. т.
Начальные разведанные запасы западного шельфа Мексиканского залива оценивались в 300 млн. т нефти и 70 млрд. м3 газа, неоткрытые запасы - в 100 млн. т нефти и 30 млрд. м3 газа.

В юго-западной части Мексиканского залива находится шельф залива Кампече, где поисковые работы ведутся с 50-х годов прошлого столетия. Наиболее крупные месторождения - Чак, Нооч, и Акал расположены в пределах горстовидного поднятия Кантарел. Разработка месторождений Кантарел начата в 1979 г., Доказанные извлекаемые запасы месторождении оцениваются в 1,2 млрд. т нефти. Перспективны меловые и верхнеюрские комплексы. В непосредственной близости от месторождения Кантарел открыт еще ряд месторождений нефти (Бакай, Абкатун, Малуб и др.). Начальные извлекаемые запасы нефти и газа в заливе Кампече, включая глубоководную часть, оценивают от 5 до 10 млрд. т.

Высокие перспективы нефтегазоносности и у шельфов п-ов Юкатан и Флорида. Мощность осадков здесь 3-6 км. Однако пробуренные скважины пока не дали положительных результатов. Перспективна и глубоководная часть Мексиканского залива (впадина Сигсби).
Общие начальные потенциальные извлекаемые ресурсы Мексиканского залива оцениваются в 6,3 млрд. т нефти и 4,8 трлн. м3 газа. В пересчете на нефть это составит более 10 млрд. т углеводородов, в том числе 4,5 млрд. т в акватории США и 5,6 млрд. т в акватории Мексики.

Карибский нефтегазоносный бассейн. В пределах бассейна наибольшие концентрации углеводородов известны в заливе (лагуне) Маракайбо (Маракайбский нефтегазоносный суббассейн). Залив Маракайбо приурочен к одноименной межгорной впадине, окруженной горными хребтами Анд. Впадина имеет форму треугольника площадью 30 тыс. км2. Со стороны Карибского моря через узкий пролив морские воды вторгаются в пределы суши, образуя морскую лагуну-озеро с максимальной глубиной дна 250 м. Площадь ее 11,2 тыс. км2, что примерно составляет 1/3 площади всей впадины.

Регион характеризуется извлекаемыми запасами нефти более 7 млрд. т, причем почти 2/3 их (от 3,12 до 4,5 млрд. т) концентрируются в недрах нефтяного гиганта - месторождения Боливар Прибрежный (Боливар-Кост). Последнее располагается вдоль восточного берега Маракайбского озера, частично захватывая и прилегающую сушу. Размеры его 85 X (20-80) км, площадь - 3,5 тыс. км2. В состав гигантского месторождения входит несколько самостоятельных месторождений: Тиа-Хуана, Лагунилас, Бачакуэр, Мене Гранде, объединенных единым контуром нефтегазоносности. Водами лагуны перекрыто 4/5 площади месторождения, разработка которого осуществляется с помощью 4500 скважин.

На месторождении Боливар Прибрежный установлено более 200 залежей нефти самого различного типа, из которых в конце 70-х годов ежегодно добывалось до 85 млн. т нефти. Основные залежи (миоцен-олигоцен), которые дают до 80% добычи, находятся в интервале глубин 170-3400 м. Известны крупные залежи в эоценовых породах на глубине свыше 4 км.

К западу от Боливара Прибрежного в бассейне озера открыто еще два нефтяных гиганта - Лама и Ламар. Извлекаемые запасы месторождения Лама оцениваются в 285 млн. т Месторождение Ламар имеет извлекаемые запасы нефти 180 млн. т, а годовую добычу 6 млн. т. В акватории Маракайбского озера известны и более мелкие месторождения, которые, как правило, частично располагаются на суше. В последние годы в южной части бассейна выявлено еще одно месторождение легкой нефти с извлекаемыми запасами более 100 млн. т.

На южном шельфе Карибского моря значительные перспективы связывают с недрами Венесуэльского залива. Потенциальные ресурсы оцениваются в 800 млн. т нефти и 200 млрд. м3 газа. К западу от залива открыто два газовых месторождения. К востоку от него в пределах Колумбийского шельфа также установлена промышленная газоносность. Перспективны в нефтегазовом отношении шельфы Панамы и Никарагуа.
В пределах Антильской складчатой зоны выявлено несколько мелких нефтяных месторождении (о. Барбадос).

На атлантической окраине Карибского бассейна находится Тринидатский нефтегазоносный суббассейн, охватывающий залив Парна, о. Тринидад и его атлантический шельф. В пределах акватории уже открыто свыше 30 месторождений углеводородов с извлекаемыми запасами нефти 181 млн. т и газа 282 млрд. м3.

Средиземноморские нефтегазоносные бассейны располагаются в западной и восточной частях Средиземного моря, общая площадь которого 2,5 млн. км2. Из них 529 тыс. км2 приходится на шельф (до 200 м), 531 тыс. км2 - на континентальный склон (от 200 до 1000 м) и 1440 тыс. км2 - на глубоководные области. По особенностям регионального тектонического строения Средиземное море распадается па две тектонические области: Западно-Средиземноморскую и Восточно-Средиземноморскую. Геофизическими работами установлено существование в северной части Средиземного моря зоны субдукции, фиксирующей погружение Африканской литосферной плиты под Европейский континент. К этой зоне приурочены зоны землетрясений и действующие вулканы.

3ападно - Средиземноморский нефтегазоносный бассейн располагается на опущенном блоке Западно-Европейской герцинской платформы. Область окружена альпийскими складчатыми сооружениями Пиренеев и Атласа. В Западно-Средиземноморском нефтегазоносном бассейне месторождения углеводородов выявлены только на шельфе. Испании - в Валенсийском рифте шириной до 10 км. Здесь установлено восемь нефтяных месторождений Месторождения сравнительно мелкие; запасы их в пределах первых десятков миллиардов тонн. Также разработаны пять месторождений: Ампоста-Марино, Касабланка, Кастелон, Дорадо и Таррако с начальными извлекаемыми запасами около 70 млн. т нефти и 20 млрд. м3 газа. Более половины текущей добычи нефти приходится па месторождение Касабланка с запасами 11,5 млн. т.

Адриатический нефтегазоносный бассейн. Первые газовые месторождения открыты в начале 60-х годов недалеко от г. Равенна (Равенна-Маре, Равенна-Маре-Зюд, Порто-Корсини-Маре и Чезатино-Маре). Запасы месторождений 20-30 млрд. м3. Позже выявлены мелкие нефтяные месторождения. Всего на адриатическом шельфе Италии открыто свыше 40 газовых месторождений с начальными доказанными запасами более 160 млрд. м3.

Восточно-Средиземноморский (Сицилийско-Тунисский) нефтегазоносный бассейн расположен на Мальтийской плите древней Африканской платформы.
На шельфе Сицилии выявлено несколько месторождений нефти: Джела, Перла, Мила, Вега, Нилде. На шельфе Туниса также выявлено несколько месторождений нефти и газа. Наиболее крупное месторождение Ашмардит имеет запасы нефти 103 млн. т и газа 31 млрд. м3. В дельте р. Нил (Египет) открыто несколько газовых месторождений на глубине 2,4 - 2,6 км (месторождения Лбу-Кир, Абу-Мади, Эль-Темзах и др.) и нефтяное месторождение Эль-Тина. Глубина моря около 10 м.

Всего в Средиземном море выявлено свыше 40 нефтяных и 60 газовых месторождений с разведанными извлекаемыми запасами 500 млн. т нефти и более 400 млрд. м3 газа. Общий начальный углеводородный потенциал Средиземного моря оценивается в 1,5 млрд. т нефти и 1 трлн. м3 газа, или около 2,5 млрд. т углеводородного сырья.

Южно-Каспийский нефтегазоносный бассейн охватывает южную часть Общая площадь провинции - 250 тыс. км2, из них 145 тыс. км скрыто под водами Южного Каспия. Месторождения нефти и газа открыты как на Апшеронском, так и па Туркменском шельфах. Глубина их залегания 2-3 км. Самая глубокая нефтяная залежь установлена па площади Сангачлы-море (5240 м), а самая глубокая газовая залежь - на площади Булла-море (5203 м). Всего в провинции открыто более 50 нефтегазовых и свыше 20 газовых и газоконденсатных месторождений при глубине воды до 120 м.

Разработку морских месторождений на Апшеронском шельфе ведут со свайных оснований с 1923 г. Наиболее известный морской промысел - Нефтяные камни.

Арктика - единый физико-географический район Земли, примыкающий к Северному полюсу и включающий окраины материков Евразии и Северной Америки, почти весь Северный Ледовитый океан с островами (кроме прибрежных островов Норвегии), а также прилегающие части Атлантического и Тихого океанов.

Площадь Арктики около 27 млн. кв. км и максимальную протяженность границ там имеет Россия. Основное богатство Арктики - колоссальное количество неразработанных энергоресурсов, под ее льдами залегает около 90 млрд баррелей нефти и 47 трлн. кубометров природного газа. Но промышленное освоение этих территорий требует самых новых технологий. Что сегодня могут предложить отечественные ученые?

По мнению ученых из Геологического общества, в Арктике сосредоточено 13% от мировых неразведанных запасов нефти и 30% неразведанных газовых запасов в мире. В пределах материковой части Арктики располагаются уникальные запасы и прогнозные ресурсы медно-никелевых руд, олова, платиноидов, агрохимических руд, редких металлов и редкоземельных элементов, крупные запасы золота, алмазов, вольфрама, ртути, черных металлов, оптического сырья и поделочных камней.

В суровых климатических условиях Арктики апробированные технологии добычи углеводородов невозможно будет применить: месторождения располагаются далеко от береговой линии, транспортные коммуникации практически отсутствуют, продолжительная и очень холодная зима, полярная ночь, а толщина ледового покрова достигает двух и более метров, ему свойственна подвижность и образование торосов.

Основной недостаток надводного способа освоения для применения в Арктике в технико-экономической нецелесообразности использования конструкции объектов обустройства в сложных ледовых условиях. Опыт эксплуатации искусственных островов в мелководной части Канадской Арктики показал, что их основным недостатком является сложность обеспечения защиты откосов от волновой и ледовой эрозии и до настоящего времени указанная проблема практически не решена.

Применение подводных промыслов является наиболее перспективным, оно основано на использовании систем подводного заканчивания скважин, устья которых располагаются на морском дне. Подводные промыслы могут быть полностью автономными, а также применяться в сочетании со стационарными или плавучими технологическими платформами, т.е. как комбинированный промысел. По сравнению с традиционными методами освоения данный способ целесообразно рассматривать в качестве ведущих для освоения Арктических ресурсов углеводородов.

При разработке морских нефтегазовых месторождений редко применяют только один из методов, обычно используют комбинированные способы сооружения морских промыслов. Например, сочетают надводный промысел с подводным, причем надводную часть устанавливают на ледостойких платформах, на которых размещают буровые и эксплуатационные скважины, а также систему дистанционного управления оборудованием устьев подводных скважин.

Более двадцати лет подводные технологии добычи и подготовки углеводородов развивались и рассматривались как наиболее многообещающие направления в освоение ресурсов Арктики. Поэтому способ применения подводных промыслов является наиболее перспективным направлением при освоении месторождений, как в условиях замерзающих, так и незамерзающих морей, с использованием оборудования подготовки и нагнетания флюидов в подводном исполнении, в том числе многофазных насосов, сепараторов, компрессорных агрегатов.

Сегодня на мировом рынке среди компаний проектантов и изготовителей подводного оборудования мировое лидерство в основном у следующих компаний: FMC Kongsberg Subsea AS, Aker Solutions (Subsea), Cameron и GE Vetco. Подводное устьевое оборудование - комплекс специальную механизмов, устройств и систем, обеспечивающих при бурении разведочных скважин механическую связь буровой установки, находящейся на плавучем основании, с устьем скважины, расположенном на дне моря.

Технологии подводной подготовки углеводородов существенно расширяют гибкость в добыче продукции скважин. В состав подводного комплекса подготовки продукции может входить следующее оборудование: центробежный газовый компрессор; электропривод с системой охлаждения; оборудование регулирования частоты вращения привода компрессора; оборудование подачи и распределения электропитания для потребителей блока; дистанционно-управляемая запорная арматура; контрольно-измерительные приборы; системы управления, аварийного выключения, мониторинга за текущим состоянием.

Подводные сепараторы - первоначально предназначались для использования при разработке небольших прибрежных месторождений в Северном море, затем нашли применение на месторождениях с уже установленными платформами, с которых осуществляется управление работой подводных систем и обеспечение их энергией.

В состав подводной установки разделения пластовой продукции помимо многофазного насоса и сепаратора входит устьевое оборудование для нагнетания пластовой воды в пласт и манифольд для распределения скважинных потоков. Наличие в продукции скважин значительного количества песка потребует совершенствования (модернизации) конструкции подводных сепараторов, особенно при совместном использовании с подводными агрегатами компримирования газа, в результате чего возрастают требования к качеству подготовки газа.

Для целей электроснабжения подводных объектов арктических шельфовых месторождений УВ наиболее существенным условием выбора вида электростанции является географическое положение потребителей электроэнергии. При использовании подводных объектов обустройства месторождения, источник электроснабжения может находиться на ближайшем побережье, платформе (стационарной или плавучей) или под водой. В настоящее время для электропередачи к морским объектам используется высоковольтная передача переменного тока ввиду простоты электрического оборудования.

Шлангокабели нашли универсальное применение для обеспечения объектов подводного промысла: электроэнергией, ингибиторами гидратообразования, гидравлическими жидкостями, линией оптоволоконной для системы управления ПДК.

Для освоения ресурсов Арктики, потребуются новые виды оборудования для разведочного и эксплуатационного бурения - рассчитанных на круглогодичную эксплуатацию и долговременную автономную работу в условиях Арктического шельфа, в этом плане перспективной выглядит полностью подводная технология бурения, обустройства месторождений и транспортировки углеводородов.

Несмотря на более высокую стоимость самих систем подводного обустройства месторождений по сравнению с традиционными, в последние годы количество месторождений, осваиваемых с использованием подводных добычных комплексов, быстро растет. Это связано со значительно меньшими эксплуатационными затратами и возможностью управления добычей с берега, без строительства и установки специальных морских добычных платформ.

Несомненным лидером в области применения подводных технологий при освоении шельфовых месторождений нефти и газа является Норвегия. Норвегия сумела одновременно создать свою национальную инновационную систему и сделать ее частью глобальной, смогла добиться того, чтобы иностранные корпорации, работающие на местном рынке, проводили локализацию своих технологий в стране или передавали их норвежским научно-исследовательским институтам.

Годовой бюджет Исследовательского совета Норвегии превышает 4 млрд. норвежских крон и финансирует одну шестую всех исследований, проводимых в Норвегии. В Норвегии реализуется несколько технических программ, которые поддерживаются и финансируются правительством страны.

Среди них: - PETROMAKS (правительственное финансирование проектов НИОКР для нефтяного сектора), GASSMAKS (правительственное финансирование проектов НИОКР для газового сектора), DEMO2000 (программа содействия развитию новых технологий и внедрению научно-технических разработок в практику), RENERGI (финансирует проекты экологически чистого использования энергетических ресурсов страны, обеспечения конкурентоспособности энергетического сектора), CLIMIT (программа для разработки проекта экологически чистого природного газа).

Одна из разработок в рамках программы DEMO2000 - проект WS Seabed Rig - испытания прототипа полностью автоматизированной подводной буровой установки. В 2001 году в Норвегии была принята национальная стратегия «Нефть и газ в 21 веке» (OG21), которая определила восемь целевых направлений для проведения исследований, а в 2008 году Научно-исследовательскому совету была выделена сумма в 5691 миллион крон (28 млрд 455 млн рублей) для поддержки инновационных разработок.

Они включают в себя экологические технологии будущего, комплексное изучение залежей и разведку месторождений, совершенствование нефтеизвлечения, экономически эффективное бурение, интегрированное производство и разработку пласта в реальном времени, подводную обработку и транспортировку, глубоководную и подводную технологии добычи, газовые технологии.

Сегодня в России большинство компаний нефтегазовой отрасли финансируют лишь стадию опытно-конструкторских работ. Для проведения дорогостоящих исследований целесообразно совместное их финансирование. Для эффективного использования средств компаний было бы целесообразно проработать механизм консолидации инвестиционных возможностей отдельных компаний.

Специализированные научные подразделения, могут внести и свой вклад в создании отдельных элементов подводных технологий. Однако конечная разработка соответствующих проектов потребует создания специализированного института по развитию подводных технологий добычи углеводородов на арктическом шельфе и немалой общегосударственной поддержкой. Основными проблемами, сдерживающими полномасштабное освоение нефтегазовых ресурсов арктического шельфа РФ, является отсутствие:

технических средств для проведения ГРР;
специальных промышленно-производственных мощностей для изготовления технических средств и оборудования;
производственных баз обеспечения;
специализированных научных и проектно-конструкторских организаций;
квалифицированного персонала;
всесторонней обоснованной концепции аварийно-спасательного обеспечения работ при освоении морских УВ ресурсов.

Создавая новую для России индустрию, необходимо организовать проектирование, используя научный потенциал РФ с привлечением ведущих зарубежных проектантов, приобретать передовые технологии и лицензии на производство и привлекать к участию ведущие зарубежные фирмы, в качестве субподрядчиков либо на условиях совместной деятельности.

Аккумулировать организационный, технологический и финансовый потенциал государства и ведущих российских нефтегазовых компаний для координации и отработки новых технологий и конструкций, а также выполнения программы разведки и освоения минеральных ресурсов на континентальном шельфе Арктики

Д.А. Мирзоев,

И.Э. Ибрагимов,

Как известно, техногенные катастрофы не случаются сами по себе. Их устраивают люди. В нефтегазовой отрасли последствия некомпетентности ужасны. Трагедия платформы Deepwater Horizon на месторождении Макондо и выброс нефти на шельфовой скважине Монтара в Тиморском море в 2009 году наглядно продемонстрировали дьявольский потенциал «человеческого фактора». Уже почти не осталось мест, где сочащуюся из песка нефть можно черпать ведрами. Зато технологически сложных углеводородов в толще геосферы еще предостаточно. Каких-то 30 лет назад бурение на дне океана, в вечной тьме и холоде, под давлением, сминающим титановые корпуса подлодок, как пивные жестянки, было фантастикой. Впрочем, это и сегодня чрезвычайно опасно. И потому запредельно дорого.

К примеру, первые 15 скважин глубоководного месторождения Тупи бассейна Сантоса «влетели консорциуму Petrobras и BP в $1 млрд. Для того чтобы добраться до этого нефтеносного пласта с извлекаемыми запасами в 8 млрд баррелей, буровикам пришлось преодолеть 2 км воды, сотню метров разъедающих металл солевых отложений и еще 5 км «слоеного пирога» из скальных пород с большими перепадами пластового давления.

Столь же тяжелые геофизические условия и у берегов Анголы, где бурение производится на глубинах от 1,5 до 2,5 км, и в Мексиканском заливе, где работу морских платформ и буровых судов-дриллшипов осложняют частые ураганы. В западных районах Северного моря, где не так давно были открыты месторождения North Uist (глубина 1,3 км) и Rosebank (1,1 км), а также на Восточном побережье Канады, жестокие шторма с пятиметровой волной бушуют более 250 дней в году. В Охотском море и особенно в Арктике нефтяникам противостоят тяжелые льды, морозы и перепады температур в рабочей зоне от -1°C в устье скважины до 130 °C в забое.

На дне

Перед бурением глубоководной скважины буровое судно (на профессиональном жаргоне «дриллшип») «зависает» над заданной геофизиками точкой дна, непрерывно корректируя свое положение тягой винтовых движителей системы динамического позиционирования на основе GPS. После этого через сквозную буровую шахту в корпусе судна на буровой колонне спускается первое звено будущей скважины — кондуктор. Это стальной толстостенный трубный фундамент массой 200 и более тонн и высотой до 27,5 м с фланцем для соединения с устьевой арматурой.

Под внимательным взором телекамер подводных аппаратов гидромониторное долото, находящееся внутри кондуктора, мощнейшими струями размывает на дне колодец, и гигантская конструкция соскальзывает в него под давлением воды. Кондуктор намертво бетонируется в колодце цементным тестом, которое подается по буровой колонне и через специальную головку выдавливается в затрубное пространство.

Тестом называется масса, образующаяся при соприкосновении вяжущих минеральных веществ с морской водой. Она превращается в искусственный камень не более чем через 18 часов. Сразу после этого в скважину спускается долото, вращающееся под напором морской воды, как турбина, и буровики проходят еще около сотни метров для установки первой секции обсадной трубы.

Для изоляции от водоносных пластов и для противодействия давлению породы скважина вновь заливается цементным раствором. Тампонаж — так профи называют этот процесс — критически важная процедура в бурении. Низкое качество «брони», противостоящей колоссальному давлению пластов (до 1000 атм), может привести к потере скважины ценой около $100 млн и даже к экологическому бедствию (как это случилось в Макондо).

Затем на устье с борта платформы опускается блок противовыбросовых превенторов (ПВП) массой около 100 т. Именно эти мощнейшие автоматические затворы призваны спасти акваторию от загрязнения нефтью в случае аварии. Сверху к ПВП присоединяется вертикальный трубопровод, или райзер.

Райзер, состоящий из десятков и иногда сотен отдельных секций, соединяет буровую установку со стволом скважины. По райзеру, как по дороге жизни, в скважину доставляется все необходимое — буровая колонна с гидравлическим долотом, буровой раствор, обсадные трубы, цементное тесто, измерительная аппаратура и специнструмент. По нему же отработанный буровой раствор выносит наверх обломки породы.

После установки райзера начинается рутинный процесс бурения, длящийся несколько месяцев: проходка отрезка, спуск очередной секции обсадной трубы, тампонаж, опрессовка, тесты на герметичность, смена долота, снова проходка и т. д. Но по мере приближения к нефтеносному пласту обстановка в прямом смысле слова накаляется: на глубине свыше 5 км температура подскакивает до 130 °C, а давление — до 900−1000 атм.

Линия обороны

По мнению директора Бюро по вопросам безопасности и природоохраны США (BSEE) Джеймса Уотсона, только ужесточение требований к надежности скважинного оборудования может компенсировать катастрофические проявления человеческого фактора. А вот инженеры-буровики, работающие «в поле», уверены, что стихию можно держать под надежным контролем и без особых инноваций.

Первая линия обороны скважины — грамотное цементирование, адекватное геофизическим свойствам пласта. Вторая линия — глушение избыточного давления прорвавшейся внутрь ствола скважинной жидкости подачей глинистого бурового раствора с удельным весом 2,5−3,5 т/м3. Как правило, подобная пробка эффективно закупоривает рвущиеся к устью нефть и газы.

Но если буровой раствор не в состоянии сдержать натиск фонтана, а также в случае внезапного сноса платформы с точки бурения и отрыва буровой колонны от насоса оператор обязан заглушить скважину через блок противовыбросовых превенторов. Стандартный глубоководный блок ПВП — это многоэтажная конструкция из двух или более кольцевых и не менее чем из трех срезных плашечных превенторов.

Управление блоком ПВП может осуществляться подачей электрического или закодированного гидроакустического сигнала, механически при помощи подводных беспилотников и в автоматическом аварийном режиме с питанием от донного гидроаккумулятора в случае повреждения гидросистемы на райзере. При этом трубные плашки сначала фиксируют буровую колонну в канале (если она там есть), а срезные окончательно глушат скважину.

В 2010 году на Deepwater Horizon первые две линии обороны пали из-за некомпетентности персонала, а в блоке ПВП не сработал ни один превентор из пяти. Впрочем, нечто подобное могло случиться гораздо раньше. Еще в 2004 году Службой по недропользованию США были опубликованы шокирующие данные по оценке надежности превенторов на глубоководных скважинах Мексиканского залива. Оказалось, что 50% из проверенных блоков ПВП были не в состоянии заглушить скважину в момент, когда в ней находится буровая колонна или обсадная труба, из-за недостаточной мощности срезных плашек. Тогда скандал был спущен на тормозах, а через шесть лет…

Мокрое дело

Сразу после ликвидации выброса ведущие компании нефтегазового сектора начали лихорадочную разработку аналогичных девайсов, специнструмента для расчистки устья глубоководных скважин от завалов, отработки технологии их применения и доставки на место аварии. Одна из наиболее продуманных систем — Global Deepwater Well Cap (GDWC) стоимостью $50 млн — была анонсирована инженерами British Petroleum и Cameron в мае этого года.

Основой GDWC, масса которой вместе с дополнительной оснасткой составляет 500 т, является 12-метровая 100-тонная стальная заглушка. В случае аварии она будет устанавливаться с судна непосредственно на блок превенторов, а процесс глушения обеспечат две клиновые задвижки с гидроприводом. В корпус заглушки интегрирована система распыления диспергаторов (веществ, разбивающих нефть на мельчайшие капли) и система подачи метанола для растворения метанового льда, которая может пригодиться в тех случаях, когда необходимо стравливание нефти из заглушки на танкеры.

GDWC комплектуется 28 переходными фитингами для адаптации к буровым установкам всех 15 типов, работающих на месторождениях BP, и выдерживает давление до 1055 атм. Вскоре ожидается появление аналогичной заглушки с рабочим диапазоном до 1406 атм. Максимальная глубина развертывания GDWC составляет 4000 м.

В комплекте GDWC имеется мобильный гидроаккумулятор и манипуляторы для подводных роботов компании Oceaneering: телекамеры, сонары, прожекторы, гидромониторы, трубные захваты и набор клешней-труборезов, способных перекусывать стальные болванки толщиной 1,5 м. По словам вице-президента BP Ричарда Моррисона, система в разобранном виде упакована в 20-футовые контейнеры и находится на базе компании в Хьюстоне. Но если случится беда, в течение недели она будет доставлена в любую точку Мирового океана. Для этого потребуется 35 трейлеров и семь самолетов типа АН-124 или Boeing 747. После прибытия в пункт назначения контейнеры будут пришвартованы к грузовым вертолетам и переброшены на буровую платформу, где после сборки с помощью крана заглушка будет отправлена на дно.

Понравилась статья? Поделитесь с друзьями!